Button-pressing affects P300 amplitude and scalp topography

Salisbury DF, Rutherford B, Shenton ME, McCarley RW

Clin Neurophysiol 2001 Sep;112(9):1676-84

PMID: 11514251


BACKGROUND: Scant and equivocal research exists examining the effects of button-pressing on P300. Button-pressing may decrease P300 latency and amplitude. The melding of motor potentials and P300 may also confound studies of P300 topography, such as studies of temporal scalp-area asymmetries in schizophrenia.

METHOD: P300 was measured on button-press and silent-count tasks in control subjects. An estimate of motor activity was constructed from a simple reaction time task, with reaction times matched to the button-press task. The motor estimate was subtracted from the button-press P300 to assess Kok’s (1988) additive model. Lastly, lateral P300 from schizophrenia patients was compared with each condition’s P300.

RESULTS: P300 was smaller and its topography different in the button-pressing task relative to silent-counting. The motor-correction procedure generated a P300 with normal topography. Comparison of the button-press P300 in controls to the silent-count P300 in schizophrenia patients reduced a significant lateral asymmetry to trend level. This asymmetry was significant after the correction procedure.

CONCLUSIONS: Button-pressing generates smaller P300 than silent-counting. Also, P300 topography in button-pressing tasks is confounded by motor potentials. The distortion can be corrected with a motor potential estimate. Motor potentials can occlude differences in P300 topography between groups.