Attention and executive systems abnormalities in adults with childhood ADHD: A DT-MRI study of connections

Makris N, Buka SL, Biederman J, Papadimitriou GM, Hodge SM, Valera EM, Brown AB, Bush G, Monuteaux MC, Caviness VS, Kennedy DN, Seidman LJ

Cereb. Cortex 2008 May;18(5):1210-20

PMID: 17906338

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is hypothesized to be due, in part, to structural defects in brain networks influencing cognitive, affective, and motor behaviors. Although the current literature on fiber tracts is limited in ADHD, gray matter abnormalities suggest that white matter (WM) connections may be altered selectively in neural systems. A prior study (Ashtari et al. 2005), using diffusion tensor magnetic resonance imaging (DT-MRI), showed alterations within the frontal and cerebellar WM in children and adolescents with ADHD. In this study of adults with childhood ADHD, we hypothesized that fiber pathways subserving attention and executive functions (EFs) would be altered. To this end, the cingulum bundle (CB) and superior longitudinal fascicle II (SLF II) were investigated in vivo in 12 adults with childhood ADHD and 17 demographically comparable unaffected controls using DT-MRI. Relative to controls, the fractional anisotropy (FA) values were significantly smaller in both regions of interest in the right hemisphere, in contrast to a control region (the fornix), indicating an alteration of anatomical connections within the attention and EF cerebral systems in adults with childhood ADHD. The demonstration of FA abnormalities in the CB and SLF II in adults with childhood ADHD provides further support for persistent structural abnormalities into adulthood.