Analysis of schizophrenia-related genes and electrophysiological measures reveals ZNF804A association with amplitude of P300b elicited by novel sounds

Del Re EC, Bergen SE, Mesholam-Gately RI, Niznikiewicz MA, Goldstein JM, Woo TU, Shenton ME, Seidman LJ, McCarley RW, Petryshen TL

Transl Psychiatry 2014;4:e346

PMID: 24424392


Several genes have recently been identified as risk factors for schizophrenia (SZ) by genome-wide association studies (GWAS), including ZNF804A which is thought to function in transcriptional regulation. However, the downstream pathophysiological changes that these genes confer remain to be elucidated. In 143 subjects (68 clinical high risk, first episode or chronic cases; 75 controls), we examined the association between 21 genetic markers previously identified by SZ GWAS or associated with putative intermediate phenotypes of SZ against three event-related potential (ERP) measures: mismatch negativity (MMN), amplitude of P300 during an auditory oddball task, and P300 amplitude during an auditory novelty oddball task. Controlling for age and sex, significant genetic association surpassing Bonferroni correction was detected between ZNF804A marker rs1344706 and P300 amplitude elicited by novel sounds (beta=4.38, P=1.03 × 10(-4)), which is thought to index orienting of attention to unexpected, salient stimuli. Subsequent analyses revealed that the association was driven by the control subjects (beta=6.35, P=9.08 × 10(-5)), and that the risk allele was correlated with higher novel P300b amplitude, in contrast to the significantly lower amplitude observed in cases compared to controls. Novel P300b amplitude was significantly correlated with a neurocognitive measure of auditory attention under interference conditions, suggesting a relationship between novel P300b amplitude and higher-order attentional processes. Our results suggest pleiotropic effects of ZNF804A on risk for SZ and neural mechanisms that are indexed by the novel P300b ERP component.