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Abstract. We propose a novel segmentation approach for introducing
shape priors in the geometric active contour framework. Following the
work of Leventon, we propose to revisit the use of linear principal com-
ponent analysis (PCA) to introduce prior knowledge about shapes in a
more robust manner. Our contribution in this paper is twofold. First, we
demonstrate that building a space of familiar shapes by applying PCA
on binary images (instead of signed distance functions) enables one to
constrain the contour evolution in a way that is more faithful to the
elements of a training set. Secondly, we present a novel region-based
segmentation framework, able to separate regions of different intensities
in an image. Shape knowledge and image information are encoded into
two energy functionals entirely described in terms of shapes. This consis-
tent description allows for the simultaneous encoding of multiple types
of shapes and leads to promising segmentation results. In particular, our
shape-driven segmentation technique offers a convincing level of robust-
ness with respect to noise, clutter, partial occlusions, and blurring.
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1 Introduction

Segmentation consists of extracting an object from an image, a ubiquitous task
in computer vision applications. Such applications range from finding special
features in medical images to tracking deformable objects; see [1–5] and the
references therein. The active contour framework [6], which utilizes image in-
formation to evolve a segmenting curve, has proven to be quite valuable for
performing this task. However, the use of image information alone often leads
to poor segmentation results in the presence of noise, clutter or occlusion. The
introduction of shapes priors in the contour evolution process has proven to be
an effective way to circumvent this issue, leading to more robust segmentation
performances.

Many different algorithms have been proposed for incorporating shape priors
in the active contour framework. For example, various approaches for utiliz-
ing shape priors in parameterized representations of contours were proposed by
Cootes et al. [7], Wang and Staib [8], and Cremers et al. [9]. Moreover, Cremers
et al. [10], recently presented a statistical approach using kernel methods [11],
for building shape models. Using this method for parameterized contours, the
authors were able to construct shape priors involving various objects, and to
obtain convincing segmentation results.

The geometric active contour framework (GAC) (see [12] and the references
therein) involves a parameter free representation of contours: contours are rep-
resented implicitly by level-set functions (such as signed distance function [13]).
Within this framework, Leventon et al. [1], proposed an algorithm in which
principal component analysis (PCA) was performed on a training set of signed
distance functions (SDFs) and the shape statistics thus obtained were used to
drive the segmentation process. This statistical approach was shown to be able
to convincingly capture the variability in shape of a particular object. This ap-
proach inspired other segmentation schemes described in [3, 14], notably, where
SDFs were used to learn the shape of an object.

In this paper, we propose to revisit the use of linear PCA to introduce prior
knowledge about shapes into the geometric active contour framework. To this
end, we present a novel variational approach totally described in terms of shapes.
Experimental results are presented to illustrate the robustness of our method: We
first demonstrate the ability of our algorithm to constrain the contour evolution
in a way that is more faithful to the training sets of shapes than prior work
involving linear PCA. Then, we show the possibility, within our framework, to
simultaneously encode knowledge about the shape of different objects, while
capturing the variability in shape of each particular object.

2 Shape-based Segmentation with level-sets

Level-set representations were introduced in [13] in the field of computational
physics and became a popular tool for image segmentation. The idea consists
of representing the segmenting contour by the zero level-set of a smooth and
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continuous function. The standard choice is to use a signed distance function for
embedding the contour. During the segmentation process, the contour is prop-
agated implicitly by evolving the embedding function. Implicit representations
present the advantage of avoiding to deal with complex re-sampling schemes of
control points. Moreover, the contour represented implicitly can naturally un-
dergo topological changes such as splitting and merging.

In what follows, we consider the problem of segmenting a gray-level given
image I : Ω → R, where Ω is a subdomain of the plane. The term segmentation
in this context will be taken to refer to the process of extracting an object of
interest from the background and potential clutter in I. Let Φ denote the corre-
sponding signed distance function to be used for segmentation [12]. We denote
the curve corresponding to the zero level-set of Φ as γ. The curve γ separates
the image domain Ω into two disjoint regions, γ1 and γ2. We assume that for all
(x, y) ∈ γ1, we have that Φ(x, y) ≥ 0. We denote by HΦ the Heaviside function
defined such as, HΦ(x, y) = 1 if Φ(x, y) ≥ 0 and HΦ(x, y) = 0, otherwise. HΦ
is a binary map and will be interpreted as the shape associated to the signed
distance function Φ, in what follows.

Segmentation using shape priors can be carried using an energy of the form
(i.e.: [9])

E(Φ, I) = β1Eshape(Φ) + β2Eimage(Φ, I). (1)

In this expression, Eshape is an energy functional embedding shape information,
and Eimage is an energy functional encoding image information available at time
t. The minimization of E(Φ, I) with respect to Φ can be accomplished via the
standard gradient descent approach:

dΦ

dt
= −∇ΦE(Φ, I) i.e., Φ(t + dt) = Φ(t)− dt · ∇ΦE(Φ, I) (2)

In the rest of this section, we present a method for the introduction of shape
priors into level-set framework for purpose of segmentation. We first discuss our
approach for building a space of shapes and compare our method with prior work.
We then introduce an energy function encoding our knowledge of the shape of
the object of interest. Finally, we propose an energy functional involving a shape
model that aims at exploiting intensity information in the image.

2.1 Space of Shapes

In what follows, we will assume that we have a training set τ of N binary images
{I1, I2, ..., IN} (the Ii’s are described by m×n matrices). The Ii’s represent the
possible shapes of objects of interest. Each Ii has values of 1 inside the object
and 0 outside. Such training sets are presented Figure 1. The shapes in τ are
supposed to be aligned using an appropriate registration scheme (see, e.g., [3])
in order to discard differences between them due to similarity transformations.

In this paper, we propose to perform PCA directly on the binary images
of the training set τ , instead of applying PCA on signed distance functions as
advocated in [3, 1]. The method is succinctly presented in what follows. First,
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the mean shape µ is computed by taking the mean of the training shapes, Ii’s,
µ = 1

N

∑N
i=1 Ii. Then, the covariance matrix C, representing the variations in

shapes, can be computed as follows. The mean shape µ is subtracted from each
Ii to create a mean-offset map Ĩi. Each such map, Ĩi is written as a column
vector Ĩc

i (The n columns of Ĩi are stacked on top of one another to form a large
mn-dimensional column vector). Each Ĩc

i is then placed as the ith column of a
matrix M, resulting in a (mn)×N -dimensional matrix M = [Ĩc

1, Ĩ
c
2, ..., Ĩ

c
N ]. The

covariance matrix is then C = 1
N MMT . Finally, using singular value decomposi-

tion C is decomposed as C = UΣUT where U is a matrix whose column vectors
represent the set of orthogonal modes of shape variation (principal components)
and Σ is a diagonal matrix of corresponding eigenvalues. Each column ui of U
can be rearranged as an m×n matrix by inverting the stacking process involved
in the construction of the Ĩc

i ’s. The rearranged column ui, forms the eigen-shape
modes Si (corresponding to the ith eigenvalue of Σ).

Let S be any binary map, representing an arbitrary shape. The coordinates
αk of the projection of S onto the first k components of the space of shapes can
be computed as

αk = UT
k (Sc − µc) (3)

where Uk is a matrix consisting of the first k columns of U, Sc and µc are the
column vectors obtained by stacking the columns of S and µ, respectively. Given
the coordinates αk = [αk

1 , αk
2 , ..., αk

k]T , the projection of S, denoted by P k(S),
can be obtained as P k(S) = Σk

i=1α
k
i .Si + µ.

2.2 Shape Priors

Shape Energy: To include prior knowledge on the shape, we propose to use
P k(Hφ) as a model and to minimize the following energy:

Eshape(Φ) := ‖HΦ− P k(HΦ)‖2 =
∫

Ω

[HΦ− P k(HΦ)]2 dxdy. (4)

Note that Eshape(Φ) is the squared L2-distance between HΦ and the projection
of HΦ onto the shape space. Minimizing Eshape amounts to drive the shape HΦ
towards the space of learnt shapes represented by binary maps.

Comparison with Past Work: We believe that the main advantage of using
binary maps over SDFs resides in the fact that binary maps have limited sup-
port (0 everywhere but inside the object, where it is 1), whereas SDFs can take a
wide range of values on the whole domain Ω. As a consequence, linear combina-
tions of SDFs can lead to shapes that are very different from the learned shape.
This phenomenon is illustrated Figure 2. Familiar spaces of shapes were con-
structed for the training sets presented in Figure 1, using either SDFs or binary
maps. One of the shapes of the training set was slightly modified to form a new
shape S, see Figure 2(b). The projections of S on both spaces (SDFs and binary
maps) are presented in Figure 2(c) and (d). For each of the two cases presented,
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the shape obtained from the projection on the space derived from the SDFs
(Figure 2(c)) bears little resemblance with the learnt shapes. In contrast, the
projection obtained from the space constructed from binary maps, Figure 2(d),
is clearly more faithful to the learned shapes. Hence, it can be expected that
shape spaces based on binary maps afford more robustness to clutter than shape
spaces built from SDFs. This point will be reinforced in the sequel.

Fig. 1. Two Training sets (before alignment). First row, training set of objects of the
same type: human silhouettes. Second row, training set of objects of different aspects:
2 words ”ORANGE” and ”YELLOW” (3 of the 20 binary maps for each).

2.3 Shape-based Approach to Region-based Segmentation

Different models [15, 16], which incorporate geometric and/or photometric (color,
texture, intensity) information, have been proposed to perform region-based seg-
mentation using level-sets. In what follows, we present an region-based based seg-
mentation framework, with a strong shape interpretation. As in Section (2.2), at
each step t of the evolution process we build a model of shape to drive segmenting
contour towards it. Here, the model of shape is extracted from the image.

Following [16], we assume that the image I is formed by two regions of dif-
ferent mean intensity. The first region can be interpreted as the background,
whereas the second region can be interpreted as the object of interest. As pre-
sented in Section (2) the zero level-set of Φ separates Ω into two regions γ1

and γ2. We compute the mean c1 and c2 of the intensity corresponding to

pixels located in γ1 and γ2, respectively: c1 :=
∫

I(x,y)H(Φ)dx dy∫
H(Φ) dxdy

and c2 :=
∫

I(x,y)(1−H(Φ)) dxdy∫
(1−H(Φ)) dxdy

. In these expressions, c1 can be interpreted as the best esti-

mate of the mean intensity of the object of interest, while c2 can be interpreted
as the best estimate of the intensity of the background, at time t. We now build
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(a) (b) (c) (d)

Fig. 2. Comparison of shape priors built from SDFs and binary maps. (a): Original
training shape. (b): Slight modification of the training shape. (c): Projection on space
of Shape built from SDFs. (d): Projection on space of Shape built from binary maps.
Projections obtained using binary maps are more faithful to the learnt shapes.

the image shape model G[I,Φ] by thresholding I in the following manner:

if c1 > c2; G[I,Φ](x, y) = 1 if I(x, y) ≥ c1+c2
2

= 0 otherwise;
if c1 ≤ c2; G[I,Φ](x, y) = 0 if I(x, y) ≥ c1+c2

2
= 1 otherwise.

(5)

This thresholding insures that G[I,Φ] is a binary map representing a certain
shape. The manner in which the cases are defined makes the pixels in the image
whose intensity is closer to c1 to be set to 1 in the model, while the pixels closer
to c2 are set to 0. G[I,Φ] can be interpreted as the most likely shape present in
the image, knowing Φ.

We next minimize the following energy in order to drive the contour evolution
towards the model of shape obtained from thresholding the image I:

Eimage(Φ, I) := ‖Hφ−G[I,Φ]‖2 =
∫

Ω

(Hφ−G[I,Φ])2 dxdy. (6)

The energy functional amounts again to measuring the L2 distance between
two shapes, represented by HΦ and G[I,Φ]. Results of this image segmentation
approach are presented Figure 3(b) and Figure 5(b) (where contour was evolved
minimizing Eimage only). The consistent description of Eimage and Eshape in
terms of binary maps allows for efficient and intuitive equilibration between
image cues and shape knowledge.
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2.4 Numerical Algorithm

Approximation of Functions: In our implementation of the above framework,
we used the following C∞(Ω̄) regularizations:

Hε1Φ(x, y) :=
(

1
2

+
1
π

arctan
Φ(x, y)

ε1

)
and δε1Φ(x, y) :=

1
π

(
ε1

Φ2(x, y) + ε2
1

)

(7)
where ε1, is a parameter such that Hε1 → H and δε1 → δ as ε1 → 0 (with
δ = H ′). The function G[I,Φ] in (5) is regularized as follows:

if c1 > c2; G[I,Φ,ε2](x, y) = 1
2 + 1

π arctan
(

I(x,y)− c1+c2
2

ε2

)

if c1 ≤ c2; G[I,Φ,ε2](x, y) = 1
2 − 1

π arctan
(

I(x,y)− c1+c2
2

ε2

)
,

(8)

where ε2, is a parameter such that G[I,Φ,ε2] → G[I,Φ] as ε2 → 0.

Invariance to Similarity Transformations: Let p = [a, b, θ, ρ] = [p1, p2, p3, p4]
be the vector of parameters corresponding to an affine transformation: a and b
correspond to translation according to x and y-axis, θ is the rotation angle and ρ
the scale parameter. Let us denote by Î(x̂, ŷ) the image of I by the affine transfor-
mation of parameter p: Î(x̂, ŷ) = I(ρ(x cos θ−y sin θ+a), ρ(x sin θ+y cos θ+b)).
As mentioned above the elements of the training sets are aligned prior to the
construction of the space of shapes. Let us suppose that the object of interest
in I differs from the registered elements of the training set by an affine trans-
formation. This transformation can be recovered by minimizing E(Φ, Î) with
respect to the pi’s. During evolution, the following gradient descent scheme can
be performed:

dpi

dt
= −∇piE(Φ, Î) = −∇piEimage(Φ, Î) for i ∈ [1, 4].

Level-set Evolution: Computing the gradients corresponding to Eshape (equa-
tion (4)) and Eimage (equation (6)) and accounting for possible affine transfor-
mations of the object of interest in I, equation (2) can be written as

dΦ

dt
= 2δε1Φ[β1P

k(Hε1Φ) + β2G[Î,Φ,ε2]
− (β1 + β2)Hε1Φ]. (9)

3 Segmentation Results

In this section we present experimental results aimed at testing the segmentation
performances of our framework on challenging images.
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3.1 Shape Prior Involving Objects of the Same Type: “Swedish
Couple”:

The Swedish Couple sequence was used as a base of test for many tracking
algorithms using active contours [6]. One of the difficulties of performing tracking
in this video resides in maintaining the identity of each person: Throughout the
sequence, the two people often touch each other and the segmenting contour can
leak from one person to the other, leading to a loss of track.

A training set of 7 silhouettes was obtained by manually selecting the con-
tour for the person on the right on 7 different images from the sequence (the
corresponding binary maps or SDFs were then completed).

Figure 3(c) presents a segmentation result obtained using shape priors built
from applying PCA to SDFs (e.g., [3]). In the image presented, the two persons
touch each other. The shape prior is not sufficiently constraining to prevent the
contour from leaking from the person on the right (man) to the person on the left
(woman). Hence, if no further control is applied to bound the coordinates of the
contour in (3), leakage can occur leading to a shape that is very different from
the ones in the training set. This phenomenon does not occur when using shape
priors built from applying PCA on binary maps as presented in Figure 3(d).
Here, the shape prior prevents leakage leading to a satisfying segmentation.

In fact, using shape priors built from the 7 binary maps obtained from the
man, we were able to track the entire sequence for both persons (while main-
taining their identity). Figure 4 presents the results obtained for a few images
from the video. Despite the small number of shapes used, the general posture
of each person was convincingly captured in each image. In addition, the final
contours are faithful to the training set: No leakage occurred from one person to
the other and the bag held by the woman is discarded. Tracking was performed
using a very simple scheme. The same initial contour (small square) was used
for each image and initially positioned wherever the final contour was in the pre-
ceding image. The parameters were set in the following manner: β1 = β2 in (1)
and ε1 = ε2 = .1 in (7) and (8), respectively. Convincing results were obtained
without involved considerations about the system dynamics.

3.2 Shape Priors Involving Objects of Different Types: “Yellow”
and “Orange”:

The goal of this section is to investigate the ability of our method to deal with
objects of different shapes. To this end, we built a training set consisting of two
words, “orange” and “yellow”, each written using twenty different fonts. The
size of the fonts was chosen to lead to words of roughly the same length. The
obtained words (binary maps, see Figure 1) were then registered according to
their centroid. No further effort such as matching the letters of the different
words was pursued. The method presented in Section (2.1) was used to build
the corresponding space of shapes for the registered binary maps.

We tested our framework on images where a corrupted version of either the
word “orange” or “yellow” was present (Figure 5(a)). Word recognition is a very
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challenging task and using geometric active contours to address it may not be a
panacea. However, the ability of the level-set representation to naturally handle
topological changes was found to be useful for this purpose: In the experiments
presented below, evolution led the contour to split and merge a certain number
of times to segment the disconnected letters of the different words.

In all the following experiments, we have chosen β1 = β2 in (1) and ε1 =
ε2 = .1 in (7) and (8), respectively. The same initial contour was used for all
the test images. Starting from the same initial contour our framework was able
to accurately detect which word was present in the image. This highlights the
ability of our method to gather image information throughout evolution and to
distinguish between objects of different classes (“yellow” and “orange”).

Experiment 1: In this experiment, one of the elements of the training set was
used (Figure 1(2b)). A thick line (occlusion) was drawn on the word and a fair
amount of gaussian noise was added to the resulting image (Figure 5(1a)). The
result of applying our method is presented Figure 5(1d). Despite the noise and
the occlusion, a reasonable segmentation is obtained. In particular, the correct
font is detected and the thick line almost completely removed. In addition, the
final result is smooth as compared to the result obtained without shape prior;
see Figure 5(1b). Hence, using binary maps to represent shape priors can have
valuable smoothing effects, when dealing with noisy images.

Experiment 2: In this second test, the word “yellow” was written using a
different font from the ones used to build the training set (visual check was per-
formed to ensure that the length of the word was comparable to the length of
the words in the training set). In addition, a “linear shadowing” was used in the
background, making the first letter ”y” completely hidden. The letter ”w” was
also replaced by a grey square (Figure 5(2a)). The result of applying our frame-
work is presented in Figure 5(2d). The word “yellow” is correctly segmented. In
particular, the letters “y” and “w”, were completely reconstructed. Comparing
to the results obtained in Figure 5(2b) and (2c) obtained without prior knowl-
edge of the shape or with shape prior built from SDFs, one can notice the effect
of our shape prior model in constraining the contour evolution.

Experiment 3: In this experiment, the word “orange” was handwritten in
capital letters roughly matching the size of letters of the components of the
training set. The intensity of the letters was chosen to be rather close to some
parts of the background. In addition, the word was blurred and smeared in a way
that made its letters barely recognizable (Figure 5 (3a)). This type of blurring
effect is often observed in medical images due to patient motion. This image is
particularly difficult to segment, since the spacing between letters and the letters
themselves are very irregular due to the combined effects of handwriting and
blurring. Hence, mixing between classes (confusion between either “yellow” or
“orange”) can be expected in the final result. The final result of the segmentation
process is presented Figure 5(3d). The word “orange” is not only recognized (no
mixing) but satisfyingly recovered; in particular, a thick font was obtained to
model the thick letters of the word.
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4 Conclusion

Our contributions in this paper are twofold. First, we demonstrate that building
a space of shapes by applying PCA to binary images (instead of signed distance
functions) enables one to constrain the contour evolution in a way that is more
faithful to the training set. Secondly, we present a novel region-based segmen-
tation framework, able to separate regions of different intensities in an image.
Shape knowledge and image information were encoded into two energies entirely
described in terms of shapes. This consistent description allows for intuitive and
simple equilibration between both image cues and shape prior.

The method presented allows for the simultaneous encoding of multiple types
of shapes and seems to lead to robust segmentation results. In particular, our
shape driven segmentation technique was able to cope with noise, clutter, partial
occlusion, change in aspect and blurring, in a convincing manner.

In our future work, we aim at comparing segmentation performances obtained
with shape priors built from linear and kernel PCA methods. Kernel PCA was
proven to be a powerful method to describe data sets. The consistent shape ap-
proach, characteristic of our framework, is envisioned to be particularly suitable
to deal with the “exotic” norms involved in kernel PCA methods.

(a) (b) (c) (d)

Fig. 3. Comparison of results. (a): base image and initial contour. (b): Segmentation
result without shape prior. (c): Result with shape prior obtained from applying PCA
on SDFs. (d): Result with shape prior obtained from applying PCA on Binary Maps.
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(1)

(2)

(3)
(a) (b) (c) (d)

Fig. 5. Each row presents the segmentation results obtained for experiment 1, 2 and 3
respectively. (a): Initial image. (b): Segmentation result using Eimage only (no shape
prior). (c): Typical segmentation result with shape prior built from SDFs. (d): Seg-
mentation result with shape prior built from binary map.


